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Abstract

Photogrammetric techniques are used for the generation of point cloud data. Multiple images
acquired with photo cameras are processed into dense point clouds using photogrammetric
workflows. These are normally based on a basic photogrammetric workflow with three steps: tie-
points detection; estimation of camera positions and orientations and of calibration parameters;
and dense-matching point cloud generation. When processing large image sets, the execution
of the workflows is time-consuming and can become limiting due to the hardware requirements
of the processing. This report presents two algorithms that decrease the memory requirements
and the processing time of the step that performs the estimation of camera positions and
orientations and of calibration parameters. The algorithms are implemented as Free and Open-
Source Software (FOSS) tools within the MicMac photogrammetry suite. They are tested with
three different datasets to assess the effect on the memory usage as well as on the quality of the
generated point clouds. The algorithms presented can be combined with other existing solutions
that target at speeding up the processing. Moreover, they allow running photogrammetric
workflows in hardware systems that could not be used before. This work has been done as part
of the eScience project “Improving Open-Source Photogrammetric Workflows for Processing
Big Datasets”.

1 Introduction

In the geo-information domain, a point cloud is a three-dimensional (3D) representation of a
surface. To obtain point clouds, several techniques are available, the most popular of which are
Lidar techniques. These are based on measuring distances using laser lights, but Lidar scanners
tend to be rather expensive. A cheaper alternative to Lidar are photogrammetric techniques,
since the only mandatory device is a photo camera. These techniques are sometimes referred to
as Structure from Motion (SfM) techniques. They became popular through their use in small
areas, objects or structures ([26]), and they have recently come to be used for larger areas,
especially thanks to the increased usage of Unmanned Aerial Vehicles (UAVs) ([25, 22]). Many
studies are available in which Lidar and photogrammetric techniques are compared ([3, 6, 12, 5]).

1.1 Photogrammetric workflow

A photogrammetric workflow is a process where multiple images acquired from different view-
ing angles are combined and processed into a dense point cloud. Photogrammetric workflows
have been used by many researchers ([7, 13, 20]) and some Free and Open Source Software
(FOSS) implementations are available ([2, 11, 29, 8, 24]). Each implementation is different, and
workflows can become complicated with additional steps to improve the results or to speed up
the process. However, most of them are built on the same basic workflow with three steps as
depicted in Figure 1. Next, we will provide a brief description of the steps:

Figure 1: Steps of the basic photogrammetry workflow.
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• Tie-points detection. First, key features in the images are extracted. This is done
for example with the SIFT algorithm ([19]). Second, the key features are cross-matched
between different images to detect points in the images that represent the same physical
locations and that are visible in different images. The detected points are called tie-points
(they are also referred to as homologous points in related literature).

• Estimation of camera positions and orientations and of calibration parameters.
Several parameters are estimated: parameters related to the position and orientation
of the camera from where the pictures were acquired; and calibration parameters, i.e.
properties of the image sensor of the camera used such as lens distortion. The estimation
of the parameters may contain some preparation or initialization steps, but the main part
of the processing consists of the so-called bundle adjustment: all the tie-points from all
the images are loaded in the memory of the hardware system, and the parameters are
refined in an iterative process.

• Dense-matching point cloud generation. The pixels of the images are projected and
intersected in 3D to produce the dense point cloud.

1.2 Motivation and goal

The general trend in the last years is to increase the number of images as well as to increase
their resolution. The increase in resolution also causes that for each image thousands of key
features can be detected.

Executing photogrammetric workflows is time consuming and can become limiting when
there is a high number of images. In some cases, additional data such as Geotagging (GPS)
data or Ground Control Points (GCPs) are collected to aid the processing. Nevertheless, this
increases the cost of the acquisition campaign, and sometimes it is unfeasible to collect the
additional data. For example, it is impossible to use GCPs in areas which are inaccessible.

From a computational perspective, parallelization techniques can be applied to speed up
the execution of the workflow when dealing with large image sets. On the one hand, the steps
performing the tie-points detection and the dense-matching point cloud generation are relatively
easy to parallelize, i.e. the processing can be split in chunks that are independent and can run
in parallel (the processing of a chunk does not require data from another chunk). For example,
the detection of key features with the SIFT algorithm for an image is independent from the
rest of images. Therefore, these steps can be easily speed up by using hardware systems with
multiple nodes and cores. On the other hand, the bundle adjustment, which performs the
estimation of the camera positions and orientations and of the calibration parameters, is not
easily parallelizable. The parameters estimation requires all the tie-points from all the images.
This demands a high available memory, and also makes it difficult to split the processing in
independent chunks that could benefit from hardware systems with multiple nodes and cores.
Therefore, other solutions must be explored.

There are some elegant, efficient and complete solutions specially tailored to deal with large
image sets ([9, 1, 17]). Other studies target at speeding up the bundle adjustment ([23, 27, 18,
15, 4, 30, 16, 21]). We recommend to the reader the work by [16] which includes an inventory
of existing techniques and algorithms for speeding up the bundle adjustment.

Even though distributed computing solutions for the parallelization of the tie-points detec-
tion and the dense-matching point cloud generation have also been explored during the project,
this report targets at the limitations in the estimation of the camera positions and orientations
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and of the calibration parameters. We are preparing a paper where the focus is on the dis-
tributed solutions. This reports focuses on the bundle adjustment limitations, and it tackles
them from a different perspective. We do not aim at modifying the bundle adjustment itself.
Instead, we propose a tie-points reduction step that runs before the bundle adjustment. The
execution of the tie-points reduction step decreases the memory requirements of the bundle ad-
justment and also speeds it up. Our solution can be combined with other solutions previously
developed.

Our work is motivated by the hypothesis that when orienting images, which is done in the
bundle adjustment, a high number of tie-points is not really needed. A small number of tie-
points is required as long as the selected tie-points have certain properties: they are properly
distributed in the pixel-space of the images, and are present in many images.

The tie-points reduction step proposed smartly decreases the number of tie-points. We
propose two different algorithms to perform the task. The algorithms are implemented as
stand-alone tools within the MicMac photogrammetry suite ([24]). The idea of reducing tie-
points has already been introduced in a study conducted by [21]. However, in that case the
tie-points reduction was part of the bundle adjustment. Our solution runs before the bundle
adjustment, after the tie-points detection. In this way, the memory requirements of the bundle
adjustment are decreased in the beginning of its execution.

By using the tie-points reduction step proposed, we also enable the execution of photogram-
metric workflows for large image sets in hardware systems that could not be used before. This
is specially useful in situations when there is not access to hardware systems with high memory
and/or with multiple nodes and cores.

1.3 Report outline

The remainder of the report is organized as follows: Section 2 gives an overview on MicMac.
Section 3 describes the tie-points reduction algorithms. Section 4 contains information regarding
a set of experiments that assess the quality and the effect of the developed algorithms. Finally,
Section 5 contains the conclusions and the future work.

2 MicMac overview

MicMac is an Free and Open-Source Software (FOSS) suite that executes photogrammetric
workflows. It contains highly configurable tools that can be combined to create different pho-
togrammetric workflows tailored for different situations. When creating a photogrammetric
workflow, several characteristics must be taken into account: the acquisition method used
(UAV, aerial, terrestrial, etc.), the availability of auxiliary data (Geotagging, GCPs, etc.), the
size of the image set, etc..

The execution of various workflows with MicMac is described in greater detail and with the
help of examples given by [10]. For the complete set of tools and options of MicMac we refer
the reader to the MicMac user guide 1. Next, we will provide a brief description on the tools
that are normally used in photogrammetric workflows with MicMac. The tools are identified
within the basic photogrammetric workflow as described in Subsection 1.1. After the images
have been acquired, the steps to generate a dense point cloud with MicMac usually include:

1To access the user guide, download MicMac using Mercurial from
https://geoportail.forge.ign.fr/hg/culture3d ; the guide is in the Documentation folder.
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• Tie-points detection with the Tapioca tool. Note that by definition, a tie-point is a
point that represents the same physical location in two or more images. Hence, a tie-point
can be linked to image pairs, image triplets or higher order image sets. However, even
when a tie-point is present in more than two images, Tapioca only provides the tie-point
by image pairs. Obviously, not all the possible image pairs share tie-points, the image
pairs that share tie-points are called valid image pairs. For each valid image pair, a file
is created containing the list of tie-points shared by the image pair. For each tie-point
Tapioca stores four values, the tie-point X,Y positions in the two images. In some cases,
information about which are the valid image pairs can be provided to Tapioca in order to
speed up the processing. For example, this information can be derived from Geotagging
data (if this was collected with the images).

• Estimation of camera positions and orientations and of calibration parameters.
Before the bundle adjustment, various initialization steps may be required depending on
the situation. For large image sets, an initial estimation of the calibration parameters
may be provided using only a small subset of the images. Additionally, an initialization
of the position and orientation parameters is recommended and can be performed with
the Martini tool. The bundle adjustment is run with the Tapas tool.

• Dense-matching point cloud generation with the Malt, Tawny and Nuage2Ply tools.

2.1 pymicmac

Pymicmac (https://github.com/ImproPhoto/pymicmac) is a python interface to MicMac. It
allows to define through an XML file photogrammetric workflows to be executed with MicMac.
A sequence of MicMac commands is specified in the XML file. During the execution of each
command pymicmac also monitors the usage of CPU, memory and disk. Pymicmac also contains
tools for the distributed execution of some MicMac commands, namely of the tie-point detection
tool Tapioca and of the dense-matching tools Malt, Tawny and Nuage2Ply.

3 Tie-points reduction

We propose to run a tie-points reduction step before the bundle adjustment. We have added the
stand-alone tools RedTieP and OriRedTieP in the MicMac suite. Each of these tools implement
a different algorithm for the tie-points reduction. By running RedTieP or OriRedTieP before
Tapas, the memory requirements and the processing time of the latter are decreased. In both
cases, the reduced set of tie-points are stored in the same format as provided by Tapioca, i.e. by
valid image pairs. Thus, adding the tie-points reduction step proposed to an existing MicMac
photogrammetric workflow is straight-forward.

In the next subsections, we provide detailed information regarding the implemented algo-
rithms in both tools. In Section 4 these are tested and compared.

3.1 RedTieP

The first option for the tie-points reduction step is to use RedTieP. Before its execution, this
tool requires an estimation of the relative orientation between the valid image pairs. This can
be done with an auxiliary tool called NO AllOri2Im.
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3.1.1 Steps

Figure 2 depicts an overview of the steps performed by RedTieP.

Figure 2: Overview of the steps performed by RedTieP.

The tie-points reduction is divided into tasks that are sequentially executed. There are as
many tasks as images, and in each task various steps are performed. As an illustrative example
we use the first task with Figures 3 to 6 explaining the steps in a graphical manner. Next, we
will describe the steps performed by all the tasks. In each task, the algorithm performs:

1. Determines the master image. This is the image driving the tie-points reduction in
this task. The ith task uses as master image the ith image from the list of images.

2. Determines the related images. These are the images that share tie-points with the
master image. In other words, there is a valid image pair between the master image and
each of the related images. To find these image the algorithm looks at the files generated
by Tapioca, which only outputs files for valid image pairs.

3. Loads (only) the tie-points of valid image pairs composed by the master image
and each of the related images. Note that the tie-points of valid image pairs composed
only by related images are not loaded. When loading the tie-points of a valid image pair,
if the related image in this valid image pair was a master image in a previously executed
task, the algorithm uses the list of reduced tie-points produced in the earlier executed
task instead of the original list of tie-points (given by Tapioca). For the first task, since no
other tasks have been executed before, all the tie-points are loaded from the original list.
Figure 3 shows a representation of the files loaded in our illustrative example. The figure
depicts the positions of the tie-points in the master image and in the related images.

4. Performs the topological merging of tie-points into multi-tie-points (MTPs). Because
of the format in which the tie-points are stored by Tapioca, i.e. by valid image pairs,
the algorithm requires a topological merging; this links all the tie-points, which represent
the same physical location but are split in different files, into individual entities. A MTP
stores the number of valid image pairs in which a related tie-point is present (multiplicity)

6



Figure 3: Loaded tie-points from the valid image pairs composed by the master image and the
related images for the first task. In this example, we assume that the related images of image
A are images B, C and D. The tie-points are loaded from three different files. Note that for the
master image (image A) it may happen that a tie-point from a file “overlaps” with a tie-point
from another file; this is the case when the same physical location is visible in more than two
images.

as well as the positions of the related tie-points in those images. Figure 4 depicts the
MTPs of the first task in our illustrative example. Note that only valid image pairs which
include the master image are considered when computing the multiplicity because other
valid image pairs were not loaded. This creates the following effect: because of the way
Tapioca computes the tie-points, it may happen that a tie-point is detected between two
image pairs which have one image in common but it is not detected in the image pair of
the other two images. For example, a tie-point detected in image pairs A-B and A-C may
not be detected in the image pair B-C. This situation happens when the cross-matching
process in Tapioca for that image pair did not find the correspondence for the tie-point.
The MTPs where this situation happens should have a lower multiplicity when compared
to MTPs where this does not happen. However, the algorithm does not load image-pairs
between related images in an on-going task. Thus, the information on missing tie-points
in valid image pairs is partially occluded. Implementing a feature to address the issue
would make the algorithm slower because the number of images to handle in each task
would be considerably higher. In order to avoid increasing the complexity of the algorithm
and the cost of its execution, we decided not to implement it.

5. Creates grids that divide the image pixel-space for all the images related to the
current task, i.e. including the master image and the related images. The size of the grid
determines how many tie-points are desired for the master image. The size is configurable
by the user.

6. Fills in the grids with the MTPs. When filling in the grid of a certain image, we use
the positions of the related tie-points in that image. Note that since a MTP is shared
between two or more images, i.e. it has related tie-points in two or more images, its
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Figure 4: Multi-tie-points (MTPs) represented by their positions in the master image for the
first task. The number next to each MTP indicates the multiplicity, i.e. the number of valid
image pairs in which a related tie-point is present.

coordinates in the image spaces of the various images are different. In Figure 5 we depict
the filled in grids for the first task of our illustrative example.

Figure 5: Filled-in grids for the master image and the related images for the first task. In this
example we use a grid size of 20 cells.

7. Attempts to reduce tie-points in the cells of the master image grid. Next, we
will describe the steps performed. For each cell of the master image grid, the algorithm:

• Sorts the MTPs according to their GainMTP . The formula to compute the
GainMTP for a MTP is

GainMTP =
MMTP

1 + (K · AMTP
Amedian

)2
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where MMTP is the multiplicity of the MTP, i.e. the number of valid image pairs
where the MTP has related tie-points; K is a threshold value configurable by the user;
AMTP is the accuracy value of the MTP, and it is computed as the worst (highest)
estimated accuracy of the tie-points related to the MTP (the estimated accuracy of
a tie-point is computed from the estimated orientation between the valid image pair
where the tie-point is present); and Amedian is the median of accuracy values of all
the MTPs. Note that if K is zero, the GainMTP is directly the multiplicity. This is
an interesting case since no estimated orientation is required. Thus, the tie-points
reduction can run right after the tie-point detection.

• Deletes the MTPs in the current grid cell that meet the conditions for
removal except the one with highest GainMTP . A MTP can be deleted if it
meets the following conditions:

– (Condition 1) It is not present in a related image that was master in an earlier
executed task. If the tie-points related to this MTP were deleteable, they would
have been deleted before.

– For each related image where the MTP has a tie-point present: (Condition 2)
there is at least another tie-point in the current master grid cell that is also
shared with the related image, and (Condition 3) there is at least another tie-
point in the grid cell of the related image.

Figure 6 shows an example of the attempt of removing MTPs in a cell of the master
image grid for the first task.

• Proceeds with the reduction of MTPs in the next grid cell of the master
image.

8. Stores the reduced tie-points (related to the MTPs that are not deleted) after all the
cells of the master image grid have been processed.

9. Proceeds with the execution of the next task (with a new master image) until all
the tasks have been executed.
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Figure 6: Example of removing MTPs in the cell #8 of the master image grid for the first
task in our illustrative example. Left: Cell #8 of the master image grid in the first task. The
numbering of the cells starts at #1 in the top-left position of the grid and the order is row-wise.
For the sake of simplicity in this example, we have used K = 0 for the computation of the
GainMTP values. Thus, GainMTP is the multiplicity. In this cell, the algorithm will attempt
to remove the MTPs with lower GainMTP , the MTPs #1 and #2 respectively. Right: Attempt
to remove the MTPs. Regarding MTP #1: Condition 1 is met, it is always met in the first task
because no MTPs have been reduced yet; Condition 2 is met because in the master image grid
cell #8 there is another MTP shared with image B (red triangle) and two shared with image
C (green circle); Condition 3 is not met because by removing this MTP, the grid cell #18 in
image B, which is the cell in the image #2 grid where the related tie-point is present, would
become empty. Therefore, this MTP cannot be removed. Regarding MTP #2: Condition 1 is
met; Condition 2 is met because in the master image grid cell #8 there are two shared MTPs
with image C (green circle); Condition 3 is met because in the grid cell #4 in image C, which is
the cell in the image C grid where the related tie-point is present, there are two more tie-points.
Therefore, this MTP can be deleted.

3.1.2 Parallel algorithm

In the algorithm performed in RedTieP, there is cross-dependency of valid image pairs in the
several tasks of the tie-points reduction step. The ith task reduces tie-points from all the
valid image pairs between the ith image (master) and its related images. This characteristic
causes that the tasks parallelization is not trivial. Concretely, inconsistencies are created if
tasks executed in parallel attempt to read, reduce and write tie-points related to the same valid
image pairs.

We have developed a parallel execution mode for the presented algorithm. To overcome the
described cross-dependency of valid image pairs, the parallel algorithm guarantees that all the
tasks running in parallel, at any time, process different valid image pairs. This characteristic de-
fines an execution workflow with tasks that are mutually exclusive for parallel execution depend-
ing on their involved valid image pairs. We use Noodles ([14]; http://nlesc.github.io/noodles/)
for the execution of the tasks in parallel. Noodles is a programmable workflow engine imple-
mented in Python. First, the various tasks are defined and their mutual execution restrictions
are specified; then, Noodles finds a coherent parallelization strategy and executes it using as
many cores as indicated by the user. Noodles does not guarantee any specific task execution
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order. Any ordering specified by the user is ignored.

3.1.3 User options

RedTieP offers a set of options to configure its tie-point removal process. The options that can
be configured are:

• The image sorting affects the order in which the images are processed, and four options
are available: by name in ascending order (this usually matches the acquisition order), by
name in descending order, by number of tie-points in ascending order, and by number of
tie-points in descending order.

• The grid size determines the number of tie-points of the reduced set. Additionally, there
is an adaptive mode that, if enabled, enlarge the grid size in images that have lower
number of tie-points compared to others.

• The value of K in the GainMTP formula. This determines the weight of the accuracy of
a MTP with respect to its multiplicity. A low value of K gives more weight to the the
multiplicity, and, if K=0, then the GainMTP is directly the multiplicity.

• The use parallel execution with Noodles. In this case the image sorting is not de-
termined by the user choice, but by the best parallelization strategy that Noodles can
find.

3.2 OriRedTieP

The second option for the tie-points reduction step is to use OriRedTieP. Before its execution,
this tool requires the initialization of the positions and orientation parameters of the whole im-
age set. This can be done with the Martini tool. Initializing the parameters for the whole image
set is a slightly more complicated process compared to the processing done by NO AllOri2Im
(the tool executed before RedTieP). In that case, we “only” estimated the relative orientation
between valid image pairs, while Martini deals with the whole image set as a block.

3.2.1 Steps

Figure 7 depicts an overview of the steps performed by OriRedTieP. Next, we will describe its
steps. The tool:

1. Projects the images in the 3D space. These projections define 2D footprints in the
3D space and can be computed from the estimation of camera positions and orientations.
Figure 8 is a graphical explanation of the 3D projections of the images.

2. Determines a 2D bounding box (XY) in the 3D space of the projected footprints of
all the images, and defines the tiles that divide the space of the bounding box. For
each tile, the algorithm stores the list of images whose 2D footprint (in the 3D space)
overlaps the area defined by the tile. In Figure 8 depicts an example of a bounding box
and the tiles that are defined.

3. Performs the tie-points reduction. The various tiles are processed. This processing
can be done in parallel, and for each tile various steps are performed. As an illustrative
example, Figures 9 to 11 explain the steps in a graphical manner. These figures follow the
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Figure 7: Overview of the steps performed by OriRedTieP.

Figure 8: Example of projecting images in the 3D space, determining the bounding box and
defining the tiles. In this example, two tiles are defined: the first tile overlaps images A, B, C,
D, E, F and G; and the second tile overlaps images D, F, G, H, I and J.

example used in Figure 8. Next, we will describe the steps performed in the processing
of each tile. In each tile, the algorithm:

(a) Loads the tie-points from all the valid image pairs between the images
whose 2D footprint overlaps the area defined by the current tile. When
loading the tie-points of a valid image pair, the estimated positions of the tie-points
in the 3D space are computed. This is done using the intersection of the tie-points
positions in the images of the image pair and the initial estimation of the camera
positions and orientations. This is illustrated in the example shown in Figure 9.
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(b) Filter out the tie-points that lay outside the tile. Since the footprint of an
image may be only partially overlapping a tile, it may happen that tie-points loaded
from a valid image pair have some tie-points that are actually outside the tile. The
estimated 3D positions of the tie-points are used to decide which tie-points must be
processed in the current tile.

Figure 9: Example of computing the position of a tie-point in the 3D space. This is computed
from the tie-point positions in the images of the image pair, and from the estimation of the
positions and orientations of the camera.

(c) Drops valid image pairs and images with a low number of tie-points (the
thresholds are configurable by the user) overlapping the current tile. This may
happen if almost all the related tie-points are outside the tile. The images and valid
image pairs that have very few tie-points are dropped in the processing of the current
tile. This means their related tie-points are also dropped.

(d) Performs the topological merging of tie-points into 3D multi-tie-points (3DMTPs).
These are similar to the MTPs defined in the RedTieP algorithm (see Subsection
3.1.1, step 4). A 3DMTP stores the number of valid image pairs in which a related
tie-point is present (multiplicity) as well as the positions of the related tie-points
in those images. However, a 3DMTP also stores a 3D position. The 3D position is
computed by (i) using the initial estimation of camera positions and orientations, and
(ii) by projecting in 3D and intersecting the tie-points positions in the two or more
images where the 3DMTP has related tie-points. Note that it is possible that more
than one valid image pair is used for the computation of the 3D position (contrary
to the 3D position estimated in the step 4.a of this algorithm). See Figure 10 for
an illustrative example. Also note that in the 3DMTPs all the valid image pairs are
considered, this is contrary to the MTPs used in RedTieP which only considered
valid image pairs that included the master image. However, not all the valid image
pairs have necessarily tie-points related to the 3DMTP. The reason is the same as
the one already described in the RedTieP algorithm (see Subsection 3.1.1, step 3.d).

(e) Creates a QuadTree structure with the XY extent in the 3D space of the
current tile being processed.

(f) Fills in the QuadTree with the 3DMTPs. The estimated 3D positions are used.
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Figure 10: Example of computing the 3D position of a 3DMTP from the related tie-points
in three images. This computation is part of the topological merging where the 3DMTPs are
created. In this example we assume that related tie-points were detected in all the possible
image pairs between the three images, i.e. image pairs A-B, A-C and B-C. Thus, this 3DMTP
has a multiplicity of 3.

(g) Creates a heap data structure that contains the 3DMTPs sorted according to
their Gain3DMTP . The formula to compute Gain3DMTP is similar to the one defined
in RedTieP for computing GainMTP (see Subsection 3.1.1, step 7). However, in this
case it is dynamic. The formula is

Gain3DMTP =
M3DMTP

1 + (K · E3DMTP
Emedian

)2
· (0.5 +

n3DMTP

N3DMTP
)

where M3DMTP is the multiplicity of the 3DMTP, i.e. the number of valid image
pairs where the 3DMTP has related tie-points; K is a threshold value configurable
by the user; E3DMTP is the estimated error when computing the 3D position of the
3DMTP; Emedian is the median of estimated errors of all the 3DMTPs; N3DMTP

is the number of images where a related tie-point is present (note that because of
possible missing related tie-points in valid image pairs, M3DMTP can not be directly
computed from N3DMTP ); and n3DMTP is the number of images, from the ones
where a related tie-point is present, that meet the following condition: there is not
any 3DMTP already selected for keeping and nearby which have related tie-points
in the same image. Thus, the value of n3DMTP changes when a nearby 3DMTP is
selected for keeping.

(h) Performs a set of removal operations. In each removal operation, it attempts
to remove tie-points using the QuadTree and the heap data structure. Figure 11
depicts an example of the first four removal operations. In each removal operation,
the algorithm:

• Pops the 3DMTP with the highest Gain3DMTP from the heap and selects
it for keeping.

• Gets the neighbor 3DMTPs using the QuadTree. These are within a
given distance (configurable by the user) to the 3DMTP extracted from the
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heap.

• Updates the n3DMTP and the Gain3DMTP values of the neighbor 3DMTPs.
This takes into account which images have tie-points related to the 3DMTP se-
lected for keeping in this removal operation.

• Deletes the neighbor 3DMTPs whose n3DMTP value is zero. The n3DMTP

value of a 3DMTP is zero if 3DMTPs already selected for keeping and near to
this 3DMTPs have related tie-points in all the images where this 3DTMP also
has related tie-points.

• Proceeds with the next removal operation where a new 3DMTP with the
highest Gain3DMTP is subtracted from the heap. Note that the 3DMTPs in the
heap data structure are resorted every time a 3DMTP is subtracted or removed
from the heap and also when the Gain3DMTP of a 3DMTP is updated.

Note that this removal process only considers for the 3DMTPs the images in which
related tie-points are present, but it does not consider the image pairs. Because
of possible missing related tie-points in valid image pairs, an additional step to
guarantee a good distribution in the image pairs is required.

(i) Validates the proper distribution of the related tie-points in the selected
3DMTPs in the image pairs. This is done based on the von Gruber point
locations ([28], pp. 574-577). The algorithm performs for all the valid image pairs
in the current tile the following checking: for each deleted tie-point, the algorithm
checks which is the closest tie-point which has been selected for keeping. If that
tie-point is too far, then the deleted tie-point is “un-deleted” and added for keeping.
The distance in which a tie-point is considered too far can be configured by the user.

(j) Stores the reduced set of tie-points after a proper tie-point distribution is
guaranteed in the images and image pairs.

(k) Proceeds with the processing of the next tile until all the tiles have been
processed.
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3.2.2 User options

OriRedTieP offers a set of options to configure its tie-point removal process. The options that
can be configured are:

• The tile size determines the number of tiles in which the 3D space will be divided.
Smaller tile sizes means more tiles. By default, the algorithm parallelizes the processing
for the different tiles. However, the user can choose to deactivate the parallel processing.

• The precision threshold determines the maximum error allowed in the computation of

Figure 11: Example of the first four removal operations of the tie-points reduction for the first
tile. For the sake of simplicity, only the tie-points from images A, B and C are considered.
In the first removal operation (top-left image) the 3DMTP with the highest Gain3DMTP is
subtracted and selected for keeping. The neighbor 3DMTPs are searched and their n3DMTP

values are updated. In this case, the 3DMTP selected for keeping has tie-points in all images
A, B and C. Thus, all the neighbor 3DMTPs can be deleted. After subtracting the 3DMTP for
keeping and deleting the neighbor 3DMTPs the heap data structure resorts the 3DMTPs.
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Figure 11: (Previous page.) In the second removal operation (top-right image) another 3DMTP
is subtracted and selected for keeping. The neighbor 3DMTPs to this 3DMTP are searched
and their n3DMTP values are updated. In this case the 3DMTP selected for keeping (in this
iteration) has related tie-points in image pairs A-B and A-C but not in image pair B-C. Since
the 3DMTP has related tie-points in all the images (even with the missing related tie-point
in image pair B-C), all the neighbor 3DMTPs are deleted. Note that in this case one of the
neighbors that gets deleted had a related tie-point in image pair B-C. Situations like this one,
if not solved, could damage the distribution of tie-points in images and image-pairs. Therefore,
an extra step after the removal operations must be performed to guarantee good tie-point
distribution. In the third removal operation (bottom-left image) another 3DMTP is subtracted
and selected for keeping. In this case this 3DMTP only has related tie-points in images A and
C. Thus, from its neighbor 3DMTPs two can be deleted (blue rectangles) but one can not be
deleted (green circle). In the forth removal operation (bottom-right image) another 3DMTP is
subtracted and selected for keeping, and all its neighbor 3DMTPs can be deleted because they
are all related to the same images.

the 3D position of a tie-point from the image positions in an image pair. If the computation
of the 3D position of a tie-point has an error larger than the threshold, the tie-point is
deleted.

• The neighbor distance factor affects the radius at which neighbor 3DMTPs are searched
in the tie-point removal process. For larger factors more neighbor 3DMTPs are found and
deleted.

• The Von Gruber multiplier is applied to the neighbor distance factor. The result is
used in the check for proper tie-point distribution in image pairs using the Von Gruber
locations. It determines how far a deleted tie-point can be from its closest tie-point
selected for keeping.

• The value of K in the Gain3DMTP formula. This determines the weight of the error in
3D position estimation of a 3DMTP with respect to its multiplicity. A low value of K
gives more weight to the the multiplicity.

4 Experiments

4.1 Definition

We defined a set of three experiments with various image sets to assess the effect of using the tie-
points reduction tools in photogrammetric workflows implemented with MicMac. Particularly,
we checked the effect on the memory requirements and processing time of the bundle adjustment
(Tapas in MicMac) and in the quality of the generated dense point cloud. For all the image
sets we have collected (or plan to collect) GCPs. A GCP is a point from which we know its 3D
position in the real world and its position in the images. GCPs are used to check the correctness
of the estimation of camera positions and orientations performed by the bundle adjustment.
Since the quality of the generated dense point cloud depends on the proper estimation of the
camera positions and orientations, we can use the GCPs to quantify the effect on the quality
of the dense point cloud.
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Experiment Image
set

#Images Image size
[pixels]

Total size
[MB]

Description

small Aquileia 18 4,592x3,056 146 Archaeological site in
Aquileia (Italy)

medium Gronau 570 5,184x3,456 5,264 Square in city center of
Gronau (Netherlands)

big Zwolle 1,196 17,310x11,310 218,168 Zwolle city and surroundings
(3% Netherlands)

Table 1: Experiments and datasets

Table 1 shows the different experiments and image sets. The main idea of having three
different experiments is as follows: in the small experiment we use an image set with a low
number of images, and we test a large number of combinations of options of the tie-points
reduction tools. This experiment is used to find the most promising combinations of options,
i.e. the ones that offer good results. These combinations are further tested in the medium
experiment with a larger image set. We find the best combinations, and we test them in the big
experiment with an even larger image set. In all the experiments we follow the same procedure.
Next, we will describe the steps. In each experiment, we:

1. Run Tapioca to detect the tie-points.

2. Run Tapas with all the tie-points. In the medium and big experiments an initialization
step is also run. A small subset of the images is used to obtain a estimation of the
calibration parameters.

3. Run GCPBascule with the available GCPs to assess the quality of the estimated param-
eters in Tapas when using all the tie-points. GCPBascule is a tool included in MicMac.
First, GCPBascule transforms the estimated camera positions and orientations to the
correct reference system by fitting a 3D transformation with some of the GCPs - nor-
mally 4-5 GCPs equally distributed in the 3D space. For each GCP, a 3D transformation
fitting error is computed. Second, GCPBascule computes the errors produced in the rest
of GCPs, which we call Check Points (CPs), when using the fitted camera positions and
orientations.

4. Define which combinations of options we want to test for the RedTieP tool.

5. For each combination of options:

(a) Run RedTieP. Note that before running RedTieP, we first have to run No AllOri2Im.

(b) Run Tapas with the reduced set of tie-points.

(c) Run GCPBascule to obtain the errors in the GCPs and CPs.

(d) Compare the errors obtained by GCPBascule in the previous step (5.c) with the ones
obtained in the step 3 (no tie-points reduction).

6. Re-do steps 4 and 5, but with the OriRedTieP tool. Note that in this case, we have to
run first Martini (instead of OriRedTieP).

4.2 Execution

During the project, the small and medium experiments have been executed. However, the big
experiment could not be executed and will be done in the future.
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For the small and medium experiments, the hardware system used was a Virtual Machine
(VM) with Ubuntu 14.04, 4 Intel i7-4720HQ cores at 2.6 GHz, 13.4 GB RAM and a virtual
hard disk of 200 GB created from a 7,200 rpm SATA disk of 1 TB. For the big experiment, we
plan to use a server running Ubuntu 16.04 with 24 Intel Xeon E5-2643 cores at 3.4 GHz, 128
GB RAM and an external 5,400 rpm SATA disk of 2 TB.

4.2.1 Small experiment

In this experiment we used the Aquileia image set. For both tools we tested several combinations
of their options. Even though the image set was too small to derive meaningful conclusions, it
was useful to extract some facts.

RedTieP

We tested various image sorting options, grid sizes with and without adaptive modes, and
values for K. We also tested the use of Noodles to parallelize the processing. In general, we
observed that the errors obtained by GCPBascule when using RedTieP were in the same order
of magnitude as when no tie-points reduction was applied, and in some cases the errors were
even better. However, the difference was small, and we believe it was caused essentially by noise
of the bundle adjustment process. Regarding the processing time in Tapas, we observed that
it decreases with the same factor as the tie-points reduction factor. Thus, when tie-points are
reduced to 10%, the processing time is also decreased to 10%. Regarding memory consumption,
we observed a decrease factor proportional to the tie-points reduction factor.

We observed that even though larger grids means a larger set of reduced tie-points, this
does not necessarily mean better results. We also found that using the adaptive mode is not
worthy, it is better to simply use a larger grid. We observed that a K value of 0 gives results
similar to when K is not 0. Using Noodles made RedTieP faster, the decrease factor of the
processing time in RedTieP was roughly the same as the number of cores used.

OriRedTieP

We tested various precision thresholds, neighbor distance factors, Von Gruber multipliers and
K values. Similarly to RedTieP, the errors obtained by GCPBascule are were in the same order
of magnitude as when no tie-points reduction was applied. As expected, the same behavior was
observed regarding the processing time in Tapas and its memory consumption.

We observed that the number of tie-points in the reduced set increases proportionally with
the neighbor distance factor and the Von Gruber Multiplier. However, as in RedTieP, a larger
set of reduced tie-points does not necessarily means better results. We observed that the best
value for K was 0.5.

4.2.2 Medium experiment

Even though the image set was small and more testing is required, the small experiment
showed that using smart tie-points reduction with the implemented tools is promising. The
reason is that we did not observe significant damage in the estimation of the camera positions
and orientations. The experiment was also useful to identify some optimal values for the
configuration parameters of both tools. In RedTieP it is recommended to use image sorting
by name in ascending order, and to avoid using adaptive grids. Setting K to 0 did not show
significant degrade of the results. This an interesting case because no estimated orientation is
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required if K is 0, and this means that in principle the tie-points reduction could run just after
the tie-points reduction without needing NO AllOri2Im. In OriRedTieP it is recommended to
use the value of 0.5 for K. In this case, even if K is set to 0, the estimated orientation of the
whole block is still required to estimate the 3D positions of the 3DMTPs.

In the medium experiment we used the Gronau image set, and we tested some combination
of options of the tie-points reduction tools. We targeted at obtaining, for each tool, two different
sizes for the set of reduced tie-points: one with around 5% of the original number of tie-points
and the other with around 10%. For the RedTieP this was done by using grid sizes of 12x12 and
20x20, while for the OriRedTieP this was done with using neighbor distance factors of 65 and
40. In RedTieP we tested each grid size with and without Noodles and with different values of
K. In OriRedTieP we tested each neighbor distance factor with different threshold precisions
and Von Gruber multipliers.

Table 2 shows the results of the medium experiment. The processing time for Tapioca (tie-
point detection) is not included in the table because it is common in all the photogrammetric
workflows tested. In the hardware system used Tapioca took 292,318.26 seconds. Note that
Tapioca is actually more time consuming than Tapas even if no tie-points reduction is done.
Therefore, speeding up the tie-point detection is also an important task. We have also work
on this but it was not the focus of this report. For more information on this topic see our
work-in-progress paper.

Regarding the results of the photogrammetric workflows using RedTiep (upper rows in Table
2) we can extract that:

• If using grid sizes of 12x12, we get tie-points reduction factor of around 6-7%, if using
20x20 they are of around 10-11%.

• The RedTieP processing time when using Noodles (with four cores) is around three times
faster when compared to using the same set of options but without Noodles.

• We do not observe dependence of the processing time in RedTieP with the grid size
(tie-points reduction factor).

• If using RedTieP in the workflows, the processing times and memory usages of Tapas
decrease. The decrement depends on the tie-points reduction factor. For the smallest tie-
points reduction factor (0.0656), the processing time decreases 96.82% and the memory
usage decreases 90.26%.

• There is an interesting effect when using Noodles. Tapas is around 30-40% faster compared
to using the same set of options in RedTieP but without Noodles. It is also using less
memory. The number of iterations of Tapas is reduced 30-40% which is probably the
cause of the decrements in the processing times.

• The Tapas residuals in all the workflows where RedTieP was used are similar, and they
are all worse that when no tie-points reduction is used (first row in the table), and in the
worst case the residual is increased 14%.

• The mean in GCPs errors computed by GCPBascule when no tie-points reduction is used
is 0.0814. When using RedTieP, this value in in five situations even better (smaller).

• The mean in CPs errors computed by GCPBascule when not using RedTieP is 0.0902.
When using RedTieP, this value is normally slightly worse except three cases where using
RedTieP is actually better.
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• Using Noodles in RedTiep does not seem to have a noticeable effect on observed the GCPs
and CPs errors.

• Regarding the value of K, setting it to 0 gives slightly worse results. From the K values
tested which were different than 0, we could not observe noticeable differences in the
GCPs and CPs errors by using one or others.

• As observed in the small experiment, the numbers with the bigger gird (20x20) are not
better than using 12x12.

Regarding the results of the photogrammetric workflows using OriRedTiep (lower rows in
Table 2) we can extract that:

• The tie-points reduction factor depends on the neighbor distance factor and the Von
Gruber multiplier (NDF and VGM in the table). With a neighbor distance factor of
65 and a Von Gruber multiplier of 1.5, we get a tie-points reduction factor of around
6%. With a neighbor distance factor of 40 and the same Von Gruber multiplier, we
get a tie-points reduction factor of around 11%. Increasing the Von Gruber multiplier
(increases the allowed maximum distance between a selected tie-point and an unselected
one) reduces the size of the reduced tie-points set.

• Contrary to RedTieP, the processing time of OriRedTieP depends on the size of the
reduced set of tie-points. It increases inversely proportional to the tie-points reduction
factor. Thus, the more points it has to remove, the more time it takes. Because of the
need to run Martini, the tie-points reduction with OriRedTieP is more time consuming
than with RedTieP.

• We tested the values of 5.0 and 20.0 for the precision threshold. For these different values,
we do not observe any change in the OriRedTieP processing time nor in the tie-points
reduction factor.

• Similarly to RedTieP, using OriRedTieP decreases the processing time and the memory
usage of Tapas. The decrement also depends on the tie-points reduction factor. For the
smallest tie-points reduction factor (0.0617), the processing time decreases 97.86 % and
the memory usage decreases 91.69%. The decrement is slightly more pronounced when
using OriRedTieP instead of RedTieP.

• Regarding the number of iterations in Tapas, the workflows where OriRedTieP was used
required much less iterations than when no tie-points reductions is done and also less than
if using RedTieP.

• The Tapas residuals in workflows with OriRedTieP are smaller than the ones in workflows
with RedTieP. However, they are not as good as if no tie-points reduction is done. In the
worst case, the residual is increased 7%.

• The means in GCPs and in CPs computed by GCPBascule are always worse if using
OriRedTieP than if no tie-points reduction is done. In general, we can observe that the
errors are smaller in the workflows using RedTieP.

• Similarly to RedTieP, having larger sets of reduced tie-points does not necessarily mean
better results in the GCPs and CPs errors.
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• For the values tested for the precision threshold, we do not observe any change in Tapas,
but the GCPBascule results are better with the value of 5.0.

• For the values tested for the Von Gruber multiplier, we observe that both Tapas and
GCPBascule results are better with the value of 1.5.

Concerning the best combination of options for RedTieP, aiming at a 95% tie-points reduc-
tion factor gives better results than aiming at 90%. Thus, for image sets with 15 Megapixels
using grids size of 12x12 is advisable. The most optimal value for K is not clear. Thus, we
advise to use the default value of 0.5. Using Noodles is also advisable.

Concerning the best combination of options for OriRedTieP, we also advise aiming at 95%
tie-points reduction factor. This can be achieved by using a neighbor distance factor of 65.
Using a precision threshold of 5.0 and a Von Gruber multiplier of 1.5 offers the best results.

With the found best combination of options, both tools achieve to decrease the processing
time and the memory usage of Tapas in around 90% while also decreasing the number of
iterations (up to 70% when using OriRedTieP, and up to 50% when using RedTieP with
Noodles). The residuals in Tapas when using tie-points reductions tools slightly degrade, around
14% if using RedTieP and around 7% if using OriRedTieP. The mean of GCPs errors increases
3% if using RedTieP, and 27% if using OriRedTieP.

4.2.3 Big experiment

The last phase of the experiments is the big experiment where we will use the Zwolle image
set. First, we will run Tapas without tie-points reduction; then, for each tool implemented, we
will run tie-points reduction using the best configuration of options for the tool as found in the
medium experiment.

The images of the Zwolle image set have a size of 200 Megapixels. In order to aim at a
tie-points reduction factor of 95% with RedTieP, we will use a grid of 36x36, a K value of 0.5
and Noodles. To aim at the same reduction factor with OriRedTieP, we will use a precision
threshold of 5.0, a neighbor distance factor of 65 and a Von Gruber multiplier of 1.5.

5 Conclusions

In this report we have proposed a tie-points reduction step that runs after the tie-points de-
tection in photogrammetric workflows. In this way, we achieve a decrement of the memory
requirements and the processing time of the bundle adjustment (the main operation in the
estimation of camera positions and orientation and of calibration parameters). The effect on
the quality of the bundle adjustment results is small. The execution of the tie-points reduction
step eases the bundle adjustment processing of large image sets, and it enables the processing
in hardware systems that could not be used before.

We have presented two algorithms to perform the tie-points reduction. The algorithms are
implemented as stand-alone tools within the MicMac photogrammetry suite. In the first tool,
which is called RedTieP, the algorithm reduces the tie-points using the position of the tie-points
in the images spaces. In the second tool, which is called OriRedTieP, the algorithm uses the
estimated 3D position of the tie-points in the real world.

We have defined a set of experiments –small, medium and big– with differently sized image
sets where both algorithms / tools can be tested. We have executed the first two experiments
where we have compared the bundle adjustment results of photogrammetric workflows without
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tie-points reduction with the results of workflows that include tie-points reduction. The results
showed that by using either of the tools to decrease the number of tie-points in a certain
factor, we achieve a decrement of roughly the same factor in the memory usage and in the
processing time, while only having a decrement of the quality of the bundle adjustment results
of a small factor. Concretely, the results of our medium experiment yielded that by decreasing
the number of tie-points in around 95%, the memory usage and the processing time of the bundle
adjustment decreased in around 90%. With that tie-points reduction, the bundle adjustment
residuals increased around 14% using RedTieP and 7% using OriRedTieP, and the GCPs errors
increased 3% using RedTieP and 27% using OriRedTieP.

Regarding future work, we will assess the effect of the tie-points reduction in a larger image
set with the big experiment. Currently, the effect on the quality of the dense point cloud
when using a reduced set of tie-points is done using the bundle adjustment residuals and the
GCPs/CPs errors. Other quality assessment metrics will be explored. For example, comparing
Digital Elevation Models (DEMs) generated from the point clouds in both situation (with and
without tie-points reduction).

In each of the tasks executed in RedTieP, we only consider image pairs where the master
image is present. This has the effect explained in Subsection 3.1.1, step 4. In future work, we
will profile the exact effect of adding all the valid image pairs.

The errors in GCPs and CPs when using OriRedTieP are too large compared to the results
obtained when using RedTieP. This is unexpected since OriRedTieP uses, in principle, more
information that RedTieP to perform the tie-points reduction (it uses the 3D estimated position
of the tie-points). In the Tapas residuals the expected behavior is observed, and OriRedTieP
results are better, but this is not the case in the GCPBascule results. This has to be further
investigated.

This report has focused on dealing with the limitations of the estimation of camera positions
and orientations and of calibration parameters. It has done it by presenting the tie-points
reduction algorithms. However, for the other steps of the basic photogrammetric workflow –
tie-point detection and dense-matching point cloud generation– we have also identified that by
using distributed computing solutions it is possible to tackle the processing of large image sets.
We have implemented solutions and these are presented in a paper work-in-progress.
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